Multilayer piping systems for hot and cold water installations inside buildings —

Part 1: General
National foreword

This British Standard is the UK implementation of EN ISO 21003-1:2008.

The UK participation in its preparation was entrusted by Technical Committee PRI/88, Plastics piping systems, to Subcommittee PRI/88/2, Plastic piping for pressure applications.

A list of organizations represented on this committee can be obtained on request to its secretary.

The UK Committee would like to emphasise that compliance with this British Standard does not necessarily mean that products are fit for non-potable hot water pipes.

The requirements contained in this standard are not necessarily indicative of all the performance requirements, or the suitability of pipework for the service conditions, likely to be encountered in a particular pipework application in the UK. In particular:

(i) The normal maximum operating cold water supply pressure in the UK is 12.5 bar, a pressure that some application classes of pipe in this standard do not meet.

(ii) This standard does not specifically describe push-fit joints that are the predominant jointing method in the UK but defines mechanical fittings in general.

(iii) There is a disparity between the malfunction temperature (100 ºC) quoted in Table 1 of Part 1 of this standard and the malfunction temperatures applicable to boilers (110 ºC) conforming to BS EN 297:1994, BS EN 483:2000 and BS EN 625:1996. Current UK practice can be found in BS 7291-1 which should be consulted when applying this standard. Pipe systems not conforming to BS 7291-1 could be subjected to temperatures in service for which they have not been tested.

(iv) The unique and traditional practice in the UK is to use products certified to BS 7291 Class S for all applications, as defined in BS 7291-1. This is recognized in the National Annex to BS EN 12828 that requires the use of systems suitable for the maximum temperatures and pressures for their intended application specified in BS 7291-1.

This standard does not replace BS 7291 parts 1, 2 and 3 (Class S) which contain detailed requirements for performance and contact with drinking water for pipes, fittings and joints manufactured from Polybutylene and PEX materials.
In addition to the above, pipes conforming to this standard may also be required to convey water intended for human consumption. The legislation setting out the requirements for water supply installations in the UK is as follows:

— the Water Supply (Water Quality) Regulations 2000, Regulation 31 (England);
— the Water Supply (Water Quality) Regulations 2001, Regulation 31 (Wales);
— the Water Supply (Water Quality) Regulations 2001, Regulation 27 (Scotland);
— the Water Supply (Water Quality) Regulations 2007, Regulation 30 (Northern Ireland) for installations for public water supplies;
— the Water Supply (Water Fittings) Regulations 1999 (England and Wales);
— the Water Byelaws 2000, (Scotland); and
— the current requirements for Northern Ireland for installations for consumers’ premises.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

Compliance with a British Standard cannot confer immunity from legal obligations.
Multilayer piping systems for hot and cold water installations inside buildings - Part 1: General (ISO 21003-1:2008)

This European Standard was approved by CEN on 15 June 2008.

CEN members are bound to comply with the CEN/CEMELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the CEN Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the CEN Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.
Foreword

This document (EN ISO 21003-1:2008) has been prepared by Technical Committee ISO/TC 138 "Plastics pipes, fittings and valves for the transport of fluids" in collaboration with Technical Committee CEN/TC 155 “Plastics piping systems and ducting systems”, the secretariat of which is held by NEN.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by January 2009, and conflicting national standards shall be withdrawn at the latest by January 2009.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN [and/or CENELEC] shall not be held responsible for identifying any or all such patent rights.

This document has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association, and supports essential requirements of EC Directive(s).

For relationship with EC Directive(s), see informative Annex ZA, B, C or D, which is an integral part of this document.

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom.

Endorsement notice

The text of ISO 21003-1:2008 has been approved by CEN as EN ISO 21003-1:2008 without any modification.
Contents

Introduction .. iv

1 Scope ... 1

2 Normative references ... 2

3 Terms and definitions.. 3

3.1 Definitions related to construction ... 3

3.2 Definitions related to geometry .. 4

3.3 Definitions related to service conditions .. 4

3.4 Definitions related to materials ... 5

3.5 Definitions related to material characteristics .. 5

3.6 Definitions related to temperature ... 5

4 Symbols and abbreviated terms ... 6

4.1 Symbols ... 6

4.2 Abbreviated terms .. 7

5 Classification of service conditions .. 7

6 Material .. 8

6.1 General... 8

6.2 Influence on water intended for human consumption ... 8

Annex A (normative) List of reference product standards .. 9

Bibliography .. 10
Introduction

The system standard of which this is Part 1 specifies the requirements for a multilayer piping system.

The multilayer piping system is intended to be used for hot and cold water installations inside buildings.

In respect of potentially adverse effects on the quality of water intended for human consumption caused by the products covered by ISO 21003:

— no information is provided as to whether the products may be used without restriction in any of the member states of the EU or EFTA;

— it should be noted that, while awaiting the adoption of verifiable European criteria, existing national regulations concerning the use and/or the characteristics of these products remain in force.

This part of ISO 21003 specifies the general aspects of multilayer piping systems.

For ancillary equipment, separate standards can apply.

Guidance on installation of plastics piping systems made from various materials intended to be used for hot and cold water installations is given in ENV 12108.

Other system standards which, at the date of publication of this part of ISO 21003, had been published for plastics piping systems used for the same application are listed in Annex A.
Multilayer piping systems for hot and cold water installations inside buildings —

Part 1:
General

1 Scope

This part of ISO 21003 specifies the general aspects of multilayer piping systems intended to be used for hot and cold water installations inside buildings for the conveyance of water — whether or not the water is intended for human consumption (domestic systems) or heating systems — under specified design pressures and temperatures appropriate to the class of application (see Table 1).

ISO 21003 is a reference product standard (see 3.4.3). It is applicable to multilayer pipes, fittings, their joints, and also to joints with components made of other plastics and non-plastics materials intended to be used for hot and cold water installations. This part of ISO 21003 is intended for use only in conjunction with all the other parts of ISO 21003.

ISO 21003 applies only to multilayer pipes with their inner layer made of plastics.

It covers a range of service conditions (application classes) and design pressures. It is not applicable for values of design temperature, T_D, maximum design temperature, T_{max}, and malfunction temperature, T_{mal}, in excess of those in Table 1.

NOTE 1 It is the responsibility of the purchaser or specifier to make the appropriate selections from these aspects, taking into account their particular requirements and any relevant national regulations and installation practices or codes.

The polymeric materials used for the stress-designed layers are the following: polybutylene (PB), polyethylene of raised temperature resistance (PE-RT), crosslinked polyethylene (PE-X), polypropylene (PP) and chlorinated poly(vinyl chloride) (PVC-C).

The PE-X used shall be fully crosslinked and shall comply with the requirements of the relevant reference product standard (ISO 15875).

NOTE 2 For the purposes of ISO 21003, crosslinked polyethylene (PE-X) as well as adhesives are considered as thermoplastic materials.

Solid-wall pipes with thin outer layers (applied as protection layers or barrier layers, for instance) are not covered by ISO 21003 but are specified in the Amendments to ISO 15874-2, ISO 15875-2 and ISO 15876-2. The total thickness of such outer layers, including the thickness of the adhesives used, shall be ≤ 0.4 mm.
2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 3, Preferred numbers — Series of preferred numbers

ISO 472, Plastics — Vocabulary

ISO 1043-1, Plastics — Symbols and abbreviated terms — Part 1: Basic polymers and their special characteristics

ISO 15874-1, Plastics piping systems for hot and cold water installations — Polypropylene (PP) — Part 1: General

ISO 15874-2, Plastics piping systems for hot and cold water installations — Polypropylene (PP) — Part 2: Pipes

ISO 15874-3, Plastics piping systems for hot and cold water installations — Polypropylene (PP) — Part 3: Fittings

ISO 15874-5, Plastics piping systems for hot and cold water installations — Polypropylene (PP) — Part 5: Fitness for purpose of the system

ISO 15875-1, Plastics piping systems for hot and cold water installations — Crosslinked polyethylene (PE-X) — Part 1: General

ISO 15875-2, Plastics piping systems for hot and cold water installations — Crosslinked polyethylene (PE-X) — Part 2: Pipes

ISO 15875-3, Plastics piping systems for hot and cold water installations — Crosslinked polyethylene (PE-X) — Part 3: Fittings

ISO 15875-5, Plastics piping systems for hot and cold water installations — Crosslinked polyethylene (PE-X) — Part 5: Fitness for purpose of the system

ISO 15876-1, Plastics piping systems for hot and cold water installations — Polybutylene (PB) — Part 1: General

ISO 15876-2, Plastics piping systems for hot and cold water installations — Polybutylene (PB) — Part 2: Pipes

ISO 15876-3, Plastics piping systems for hot and cold water installations — Polybutylene (PB) — Part 3: Fittings

ISO 15876-5, Plastics piping systems for hot and cold water installations — Polybutylene (PB) — Part 5: Fitness for purpose of the system

ISO 15877-1, Plastics piping systems for hot and cold water installations — Chlorinated poly(vinyl chloride) (PVC-C) — Part 1: General

ISO 15877-2, Plastics piping systems for hot and cold water installations — Chlorinated poly(vinyl chloride) (PVC-C) — Part 2: Pipes

ISO 15877-3, Plastics piping systems for hot and cold water installations — Chlorinated poly(vinyl chloride) (PVC-C) — Part 3: Fittings
ISO 15877-5, Plastics piping systems for hot and cold water installations — Chlorinated poly(vinyl chloride) (PVC-C) — Part 5: Fitness for purpose of the system

ISO 21003-2, Multilayer piping systems for hot and cold water installations inside buildings — Part 2: Pipes

ISO 21003-3, Multilayer piping systems for hot and cold water installations inside buildings — Part 3: Fittings

ISO 21003-5, Multilayer piping systems for hot and cold water installations inside buildings — Part 5: Fitness for purpose of the system

ISO/TS 21003-7, Multilayer piping systems for hot and cold water installations inside buildings — Part 7: Guidance for the assessment of conformity

ISO 22391-1, Plastics piping systems for hot and cold water installations — Polyethylene of raised temperature resistance (PE-RT) — Part 1: General

ISO 22391-2, Plastics piping systems for hot and cold water installations — Polyethylene of raised temperature resistance (PE-RT) — Part 2: Pipes

ISO 22391-3, Plastics piping systems for hot and cold water installations — Polyethylene of raised temperature resistance (PE-RT) — Part 3: Fittings

ISO 22391-5, Plastics piping systems for hot and cold water installations — Polyethylene of raised temperature resistance (PE-RT) — Part 5: Fitness for purpose of the system

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 3 and ISO 472, and the following, apply.

3.1 Definitions related to construction

3.1.1 multilayer pipe
pipe comprised of different stress-designed layers

3.1.2 multilayer M-pipe
pipe comprised of polymeric stress-designed layers and one or more metallic stress-designed layers (e.g. PE-Xb/Al/PE-Xb or PE-RT/Al/PE-Xb)

NOTE The wall thickness of the pipe consists of at least 60 % of polymeric material.

3.1.3 multilayer P-pipe
pipe comprised of more than one polymeric stress-designed layer (e.g. PVC-C/PE-Xb or PE-Xb/EVOH/PE-Xb)

NOTE Pipes consisting of one polymeric stress-designed layer and an outer polymeric layer which is not stress-designed are covered by the appropriate reference product standard (see Annex A).

3.1.4 inner layer
layer in contact with the fluid which is conveyed

3.1.5 outer layer
layer exposed to the outer environment
3.1.6 **embedded layer**
layer between the outer and inner layers

3.1.7 **application layer**
layer which provides a specific property linked to the conditions of use of the pipe

3.2 Definitions related to geometry

3.2.1 **nominal diameter**
\(d_n \)
specified outside diameter, in millimetres, assigned to a nominal size (DN/OD or DN/ID)

3.2.2 **outside diameter**
\(d_e \)
outside diameter measured through the pipe cross-section at any point on the pipe, or the spigot end of a fitting, rounded up to the nearest 0,1 mm

3.2.3 **inside diameter**
\(d_i \)
inside diameter measured through the pipe cross-section at any point on the pipe, rounded up to the nearest 0,1 mm

3.2.4 **wall thickness**
\(e \)
measured wall thickness at any point around the circumference of a component, rounded up to the nearest 0,1 mm

3.2.5 **minimum wall thickness**
\(e_{\text{min}} \)
minimum value of the measured wall thickness at any point around the circumference of a component, rounded up to the nearest 0,1 mm

3.2.6 **metal layer standard dimension ratio**
\(SDR_m \)
outside diameter of the metal layer of a pipe divided by the wall thickness of the metal layer

3.2.7 **polymeric layer standard dimension ratio**
\(SDR_p \)
outside diameter of the polymeric layer of a pipe divided by the wall thickness of the polymeric layer

3.3 Definitions related to service conditions

3.3.1 **overall service (design) coefficient**
\(C \)
overall coefficient, with a value greater than one, which takes into consideration service conditions as well as properties of the components of a piping system other than those represented in the lower confidence limit, \(P_{\text{LPL}} \)
3.4 Definitions related to materials

3.4.1 virgin material
material, in a form such as granules or powder, that has not been subjected to use or processing other than that required for its manufacture and to which no reprocessable or recyclable material has been added

3.4.2 own reprocessable material
single material prepared from rejected unused pipes and fittings, including trimmings from the production of pipes and fittings, that will be reprocessed in a manufacturer’s plant after having been previously processed by the same manufacturer by a method such as moulding or extrusion and for which the complete formulation is known

3.4.3 reference product standard
International Standard or draft International Standard, prepared by ISO/TC 138/SC 2, applicable to non-multilayer pipes, to which this International Standard can refer for clauses related to the materials, components (e.g. fittings) and fitness for purpose of the system

3.4.4 stress-designed polymeric layer
polymeric layer which is designed to be stress-bearing

NOTE The material used in such layers is restricted to those in the reference product standards (see Annex A).

3.5 Definitions related to material characteristics

3.5.1 application class
class related to a typical field of application and a design period of 50 years

NOTE The classification is taken from ISO 10508.

3.5.2 design pressure
\[p_D \]
highest pressure related to the circumstances for which the system has been designed and is intended to be used

NOTE The design pressure, \(p_D \), is equal to the maximum design pressure, MDP, as specified in EN 806-1.

3.5.3 long-term pressure strength
lower confidence limit of the predicted hydrostatic pressure
\[p_{LPL} \]
quantity, with the dimensions of pressure, which represents the 97,5 % (one-sided) lower confidence limit of the predicted hydrostatic pressure at a temperature \(T \) and time \(t \)

3.6 Definitions related to temperature

3.6.1 design temperature
\[T_D \]
temperature, or a combination of temperatures, of the conveyed water related to the circumstances for which the system has been designed

3.6.2 maximum design temperature
\[T_{max} \]
highest design temperature, \(T_{D} \), occurring for short periods only
3.6.3 malfunction temperature
T_{mal}
highest temperature that can be reached when the control limits are exceeded

NOTE This may occur during a total of up to 100 h over a period of 50 years.

3.6.4 cold water
water at a temperature of up to approximately 25 °C

NOTE For design purposes, 20 °C is used.

4 Symbols and abbreviated terms

4.1 Symbols

d_i inside diameter

d_o outside diameter

d_n nominal diameter

e_n nominal wall thickness

e_{min} minimum wall thickness

F_{pull} adhesive strength

p_C calculated value of the pressure (in bars) of the pipe construction corresponding to time to failure/test temperature in accordance with ISO 21003-2

p_{CD} calculated value of the design pressure (in bars) of the pipe construction, determined for the appropriate service condition class from data obtained in accordance with ISO 21003-2

p_F hydrostatic test pressure (in bars) to be applied to the assembly during the test period

p_D design pressure (in bars)

p_{LPL} long-term pressure strength (lower confidence limit of the predicted hydrostatic pressure)

T temperature

T_D design temperature

T_{mal} malfunction temperature

T_{max} maximum design temperature

t time

σ hydrostatic stress

σ_F hydrostatic stress (in megapascals) for the fitting body material, determined for the appropriate service condition class from data obtained in accordance with the reference product standard or ISO 9080

σ_{DF} design stress (in megapascals) for the fitting body material, determined for the appropriate service condition class from data obtained in accordance with the reference product standard or ISO 9080
4.2 Abbreviated terms

For the purposes of this document, the abbreviated terms given in ISO 1043-1 apply.

5 Classification of service conditions

The performance requirements for multilayer piping systems conforming to ISO 21003 are specified for four different application classes as shown in Table 1.

For any application, the selection of the applicable class conforming to Table 1 shall be agreed by the parties concerned. Each application class shall be combined with a design pressure, p_D, of 4 bar, 6 bar, 8 bar or 10 bar, as applicable (1 bar = 0.1 MPa).

<table>
<thead>
<tr>
<th>Application class</th>
<th>Design temperature T_D °C</th>
<th>Time a at T_D years</th>
<th>T_{max} °C</th>
<th>Time at T_{max} years</th>
<th>T_{mal} °C</th>
<th>Time at T_{mal} h</th>
<th>Typical field of application</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 a</td>
<td>60</td>
<td>49</td>
<td>80</td>
<td>1</td>
<td>95</td>
<td>100</td>
<td>Hot water supply (60 °C)</td>
</tr>
<tr>
<td>2 a</td>
<td>70</td>
<td>49</td>
<td>80</td>
<td>1</td>
<td>95</td>
<td>100</td>
<td>Hot water supply (70 °C)</td>
</tr>
<tr>
<td>4 b</td>
<td>20 plus cumulative 20 °C</td>
<td>2.5</td>
<td>70</td>
<td>2.5</td>
<td>100</td>
<td>100</td>
<td>Underfloor heating and low-temperature radiators</td>
</tr>
<tr>
<td></td>
<td>40 plus cumulative 20 °C</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60 plus cumulative 20 °C</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 b</td>
<td>20 plus cumulative 20 °C</td>
<td>14</td>
<td>90</td>
<td>1</td>
<td>100</td>
<td>100</td>
<td>High-temperature radiators</td>
</tr>
<tr>
<td></td>
<td>60 plus cumulative 20 °C</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80 plus cumulative 20 °C</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a A country may select either class 1 or class 2 in conformity with its national regulations.
b Where more than one design temperature for time and associated temperature appears for any class, they should be aggregated. "Plus cumulative" in the table implies a temperature profile of the mentioned temperature over time (e.g. the design temperature profile for 50 years for class 5 is 20 °C for 14 years followed by 60 °C for 25 years, 80 °C for 10 years, 90 °C for 1 year and 100 °C for 100 h).

NOTE For values of T_D, T_{max} and T_{mal} in excess of those in the table, this International Standard does not apply.

All systems which satisfy the conditions specified in Table 1 shall also be suitable for conveyance of cold water for a period of 50 years at a temperature of 20 °C and a design pressure of 10 bar.

All heating installations shall only use water or treated water as the transfer fluid.
6 Material

6.1 General

The material characteristics of stress-designed materials shall be evaluated in accordance with the reference product standard.

6.2 Influence on water intended for human consumption

All materials of the multilayer piping system, when in contact with water which is intended for human consumption, shall not affect the quality of the drinking water and shall be in compliance with national regulations.
Annex A
(normative)

List of reference product standards

<table>
<thead>
<tr>
<th>Material</th>
<th>Reference product standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB</td>
<td>ISO 15876-1, ISO 15876-2, ISO 15876-3, ISO 15876-5</td>
</tr>
<tr>
<td>PE-RT</td>
<td>ISO 22391-1, ISO 22391-2, ISO 22391-3, ISO 22391-5</td>
</tr>
<tr>
<td>PVC-C</td>
<td>ISO 15877-1, ISO 15877-2, ISO 15877-3, ISO 15877-5</td>
</tr>
</tbody>
</table>
Bibliography

[1] ISO 497, Guide to the choice of series of preferred numbers and of series containing more rounded values of preferred numbers

[2] ISO 10508, Plastics piping systems for hot and cold water installations — Guidance for classification and design

British Standards Institution (BSI)

BSI is the independent national body responsible for preparing British Standards. It presents the UK view on standards in Europe and at the international level. It is incorporated by Royal Charter.

Revisions

British Standards are updated by amendment or revision. Users of British Standards should make sure that they possess the latest amendments or editions.

It is the constant aim of BSI to improve the quality of our products and services. We would be grateful if anyone finding an inaccuracy or ambiguity while using this British Standard would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover.

Tel: +44 (0)20 8996 9000 Fax: +44 (0)20 8996 7400

BSI offers members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of standards.

Buying standards

Orders for all BSI, international and foreign standards publications should be addressed to Customer Services.

Tel: +44 (0)20 8996 9001 Fax: +44 (0)20 8996 7001

Email: orders@bsigroup.com

You may also buy directly using a debit/credit card from the BSI Shop on the Website http://www.bsigroup.com/shop.

In response to orders for international standards, it is BSI policy to supply the BSI implementation of those that have been published as British Standards, unless otherwise requested.

Information on standards

BSI provides a wide range of information on national, European and international standards through its Library and its Technical Help to Exporters Service. Various BSI electronic information services are also available which give details on all its products and services. Contact the Information Centre.

Tel: +44 (0)20 8996 7111 Fax: +44 (0)20 8996 7048

Email: info@bsigroup.com

Subscribing members of BSI are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration.

Tel: +44 (0)20 8996 7002 Fax: +44 (0)20 8996 7001

Email: membership@bsigroup.com

Information regarding online access to British Standards via British Standards Online can be found at http://www.bsigroup.com/BSOL.

Copyright

Copyright subsists in all BSI publications. BSI also holds the copyright, in the UK, of the publications of the international standardization bodies. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI.

This does not preclude the free use, in the course of implementing the standard, of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained.

Details and advice can be obtained from the Copyright & Licensing Manager.

Tel: +44 (0)20 8996 7070 Email: copyright@bsigroup.com