Plastics piping systems for hot and cold water installations — Polybutylene (PB) —

Part 1: General

The European Standard EN ISO 15876-1:2003, incorporating amendment A1:2007, has the status of a British Standard
National foreword

The UK participation in its preparation was entrusted by Technical Committee PRI/88, Plastics piping systems, to Subcommittee PRI/88/2, Plastics piping systems for pressure applications.

A list of organizations represented on this subcommittee can be obtained on request to its secretary.

Additional information

The UK voted against the acceptance of this standard at the CEN Formal Vote, and PRI 88/2 will maintain BS 7291-1:2001,1) BS 7291-2:20012) and BS 7291-3:20013) and strongly recommends the continued use of polybutylene (PB) and crosslinked polyethylene (PE-X) piping systems certified to BS 7291-2 or BS 7291-3, Class S, for the following reasons.

a) Attention is drawn to the statement in the Scope of this standard relating to the exclusion from it of piping systems having service conditions in excess of those quoted in Table 1. Central heating systems in the UK fall into this category. BS 7291-1 states the service conditions for UK systems where the maximum system service temperature for sealed central heating systems, designated as Class S, is 105 °C and the system malfunction temperature is 114 °C. Both these temperatures are significantly in excess of those specified in Table 1 and these UK systems are therefore not covered by this standard.

1) BS 7291-1:2001, Thermoplastics pipes and associated fittings for hot and cold water for domestic purposes and heating installations in buildings — Part 1: General requirements.

Amendments issued since publication

<table>
<thead>
<tr>
<th>Amd. No.</th>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
</table>
b) In addition to the above:

1) The normal maximum operating cold water supply pressure in the UK is 12.5 bar⁴ which some categories of piping systems in the BS EN ISO 15876 series of standards do not meet.

2) The BS EN ISO 15876 series of standards does not specifically describe push fit joints, which are the predominant jointing method in the UK.

3) There is a disparity between the malfunction temperature quoted in Table 1 (100 ºC) and the malfunction temperatures applicable to boilers (110 ºC) conforming to BS EN 297:1994⁵, BS EN 483:2000⁶ and BS EN 625:1996⁷. Consequently piping systems could be subjected to temperatures in service for which they have not been tested.

4) The unique and traditional practice in the UK is to use products certified to BS 7291-2 or BS 7291-3, Class S, for all applications, as defined in BS 7291-1. This is recognized in the national annex to BS EN 12828⁸, which recommends the use of systems suitable for the maximum temperatures and pressures for their intended application specified in BS 7291-1.

Updated versions of BS 7291-1, BS 7291-2 and BS 7291-3 are being prepared, which maintain these traditional UK operating conditions, and measures are being taken to address this issue in appropriate harmonized European Standards.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

Compliance with a British Standard cannot confer immunity from legal obligations.

⁴ 1 bar = 100 kPa.
⁵ BS EN 297:1994, Gas-fired central heating boilers — Type B₁ and B₁₁B boilers fitted with atmospheric burners of nominal heat input not exceeding 70 kW.
⁶ BS EN 483:2000, Gas-fired central heating boilers — Type C boilers of nominal heat input not exceeding 70 kW.
⁷ BS EN 625:1996, Gas-fired central heating boilers — Specific requirements for the domestic hot water operation of combination boilers of nominal heat input not exceeding 70 kW.
⁸ BS EN 12828, Heating systems in buildings — Design for water-based heating systems.
English version

Plastics piping systems for hot and cold water installations - Polybutylene (PB) - Part 1: General (ISO 15876-1:2003)

This European Standard was approved by CEN on 17 March 2003.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Management Centre or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the Management Centre has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Luxembourg, Malta, Netherlands, Norway, Portugal, Slovakia, Spain, Sweden, Switzerland and United Kingdom.
Contents

Contents .. 2

Introduction .. 4

1 Scope .. 5

2 Normative references ... 5

3 Terms and definitions, symbols and abbreviated terms ... 5

 3.1 Terms and definitions ... 5
 3.1.1 Geometrical terms and definitions .. 5
 3.1.2 Terms and definitions related to service conditions ... 7
 3.1.3 Terms and definitions related to material characteristics ... 8

 3.2 Symbols ... 8

 3.3 Abbreviated terms ... 9

4 Classification of service conditions .. 9

5 Material ... 10

 5.1 General ... 10

 5.2 Influence on water intended for human consumption .. 10

 5.3 Crystallisation ... 11

 5.4 Reprocessable material ... 11

Bibliography ... 12
Foreword

This document (EN ISO 15876-1:2003) has been prepared by Technical Committee CEN/TC 155 “Plastics piping systems and ducting systems”, the secretariat of which is held by NEN, in collaboration with Technical Committee ISO/TC 138 “Plastics pipes, fittings and valves for the transport of fluids”.

NOTE This standard was submitted for CEN enquiry as prEN 12319-1:1996.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by June 2004, and conflicting national standards shall be withdrawn at the latest by December 2005.

This standard is Part of a System Standard for plastics piping systems of a particular material for a specified application. There are a number of such System Standards.

System Standards are based on the results of the work undertaken in ISO/TC 138 “Plastics pipes, fittings and valves for the transport of fluids”, which is a Technical Committee of the International Organisation for Standardization (ISO).

They are supported by separate standards on test methods to which references are made throughout the System Standard.

The System Standards are consistent with general standards on functional requirements and recommended practices for installation.

EN ISO 15876 consists of the following Parts [1] under the general title: Plastics piping systems for hot and cold water installations — Polybutylene (PB)

— Part 1: General (the present standard)
— Part 2: Pipes
— Part 3: Fittings
— Part 5: Fitness for purpose of the system

This Part 1 of EN ISO 15876 includes a Bibliography.

At the date of publication of this standard, System Standards for piping systems of other plastics materials used for the same application are the following:

EN ISO 15877, Plastics piping systems for hot and cold water installations — Chlorinated poly(vinyl chloride) (PVC-C) (ISO 15877:2003)

For pipes and fittings which have conformed to the relevant national standard before 1st November, 2003, as shown by the manufacturer or by a certification body, the national standard may continue to apply until 30th November, 2005.

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Luxembourg, Malta, Netherlands, Norway, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom.

[1] This System Standard does not incorporate a Part 4 Ancillary equipment or a Part 6 Guidance for installation. For ancillary equipment separate standards can apply. A guidance for installation for plastics piping systems made from different materials, intended to be used for hot and cold water installations, is covered by ENV 12108 [1].
Introduction

The System Standard, of which this is Part 1, specifies the requirements for a piping system when made from polybutylene (PB). The piping system is intended to be used for hot and cold water installations.

In respect of potential adverse effects on the quality of water intended for human consumption, caused by the product covered by EN ISO 15876:

— This standard provides no information as to whether the product may be used without restriction in any of the Member States of the EU or EFTA;

— It should be noted that, while awaiting the adoption of verifiable European criteria, existing national regulations concerning the use and/or the characteristics of this product remain in force.

This Part of EN ISO 15876 specifies the general aspects of the plastics piping system.
1 Scope

This Part of EN ISO 15876 specifies the general aspects of polybutylene (PB) piping systems intended to be used for hot and cold water installations within buildings for the conveyance of water whether or not intended for human consumption (domestic systems) and for heating systems, under design pressures and temperatures according to the class of application (see Table 1).

This standard covers a range of service conditions (application classes) and design pressure and pipe dimension classes. For values of T_D, T_{max} and T_{mal} in excess of those in Table 1, this standard does not apply.

NOTE It is the responsibility of the purchaser or specifier to make the appropriate selections from these aspects, taking into account their particular requirements and any relevant national regulations and installation practices or codes.

It also specifies the test parameters for the test methods referred to in this standard.

In conjunction with the other Parts of EN ISO 15876 (see Foreword) it is applicable to PB pipes, fittings, their joints and to joints with components of other plastics and non-plastics materials intended to be used for hot and cold water installations.

2 Normative references

This Standard incorporates by dated or undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text and the publications are listed hereafter. For dated references, subsequent amendments to or revisions of any of these publications apply to this Standard only when incorporated in it by amendment or revision. For undated references the latest edition of the publication referred to applies (including amendments).

ISO 472:1999, Plastics — Vocabulary

3 Terms and definitions, symbols and abbreviated terms

For the purposes of this standard, the following terms and definitions, symbols and abbreviated terms apply.

3.1 Terms and definitions

In addition to the terms and definitions given below, the terms and definitions given in ISO 472:1999 and ISO 1043-1:2001 apply.

3.1.1 Geometrical terms and definitions

3.1.1.1 Nominal size

3.1.1.1.1 nominal size (DN)
numerical designation of the size of a component, which is a convenient round number, approximately equal to the manufacturing dimensions, in millimetres (mm)

3.1.1.1.2 nominal size (DN/OD)
nominal size, related to outside diameter
3.1.1.2
nominal outside diameter \((d_n)\)
specified diameter, in millimetres, assigned to a nominal size DN/OD

3.1.1.3
outside diameter (at any point) \((d_e)\)
measured outside diameter through the cross section at any point of a pipe or spigot end of a fitting, rounded up to the nearest 0,1 mm

3.1.1.4
mean outside diameter \((d_{em})\)
measured length of the outer circumference of a pipe or spigot end of a fitting in any cross section divided by \(\pi \approx 3.142\) rounded up to the nearest 0,1 mm

3.1.1.5
minimum mean outside diameter \((d_{em,min})\)
minimum value of the mean outside diameter as specified for a given nominal size

3.1.1.6
maximum mean outside diameter \((d_{em,max})\)
maximum value of the mean outside diameter as specified for a given nominal size

3.1.1.7
mean inside diameter of socket \((d_{sm})\)
arithmetical mean of two measured inside diameters perpendicular to each other at the midpoint of the socket length

3.1.1.8
out-of-roundness (ovality)
difference between the measured maximum outside diameter and the measured minimum outside diameter in the same cross-sectional plane of a pipe or spigot end of a fitting, or the difference between the measured maximum inside diameter and the measured minimum inside diameter in the same cross-sectional plane of a socket

3.1.1.9
nominal wall thickness \((e_n)\)
umerical designation of the wall thickness of a component, approximately equal to the manufacturing dimension, in millimetres (mm)

3.1.1.10
wall thickness (at any point) \((e)\)
measured wall thickness at any point around the circumference of a component, rounded up to the nearest 0,1 mm

3.1.1.11
minimum wall thickness (at any point) \((e_{min})\)
minimum wall thickness at any point around the circumference of a component, as specified

3.1.1.12
maximum wall thickness (at any point) \((e_{max})\)
maximum wall thickness at any point around the circumference of a component, as specified

3.1.1.13
tolerance
permitted variation of the specified value of a quantity expressed as the difference between the permitted maximum and permitted minimum value

3.1.1.14
pipe series (S)
dimensionless number for pipe designation and conforming to ISO 4065[2]

NOTE According to EN ISO 15876 the pipe series S is used as a means for selecting pipe sizes for practical purposes (see EN ISO 15876-2:2003).
3.1.1.15 calculated pipe value \((S_{\text{calc}}) \)
value for a specific pipe calculated according to the following equation rounded up to the nearest 0,1 mm

\[
S_{\text{calc}} = \frac{d_n - e_n}{2e_n}
\]

where:
- \(d_n \) is the nominal outside diameter, in millimetres;
- \(e_n \) is the nominal wall thickness, expressed in millimetres

3.1.2 Terms and definitions related to service conditions

3.1.2.1 design pressure \((p_D) \)
highest pressure related to the circumstances for which the system has been designed and is intended to be used

NOTE The design pressure, \(p_D \), is equal to the maximum design pressure, MDP, as specified in EN 806-1 [3].

3.1.2.2 hydrostatic stress \((\sigma) \)
stress, expressed in megapascals, induced in the wall of a pipe when a pressure is applied using water as a medium. It is calculated using the following approximate equation:

\[
\sigma = p \times \frac{(d_{\text{em}} - e_{\text{min}})}{2e_{\text{min}}}
\]

where:
- \(p \) is the applied pressure, in megapascals;
- \(d_{\text{em}} \) is the mean outside diameter of the pipe, in millimetres;
- \(e_{\text{min}} \) is the minimum wall thickness, in millimetres

3.1.2.3 design temperature \((T_D) \)
temperature or a combination of temperatures of the conveyed water dependent on the service conditions for which the system has been designed

3.1.2.4 maximum design temperature \((T_{\text{max}}) \)
highest design temperature \(T_D \) occurring for short periods only

3.1.2.5 malfunction temperature \((T_{\text{mal}}) \)
highest temperature that can be reached when the control limits are exceeded

3.1.2.6 cold water temperature \((T_{\text{cold}}) \)
temperature of conveyed cold water of up to approximately 25 °C

NOTE For design purposes 20 °C is used.

3.1.2.7 treated water for heating installations
water, intended for heating installations, which contains additives which have no detrimental effect on the system
3.1.3 Terms and definitions related to material characteristics

3.1.3.1 lower confidence limit (LCL)
quantity, expressed in megapascals (MPa), which can be considered as a material property, representing the 97.5% lower confidence limit of the predicted average long-term hydrostatic strength at the given temperature, T, and time, t

3.1.3.2 design stress (σ_D)
allowable stress, in megapascals (MPa) in the pipe material, σ_{DP}, or in the plastics fitting material, σ_{DF}, for a given application or service condition, respectively

3.1.3.3 overall service (design) coefficient (C)
overall coefficient with a value greater than one, which takes into consideration service conditions as well as properties of the components of a piping system other than those represented in the lower confidence limit, LCL

3.1.3.4 own reprocessable material
material prepared from rejected unused pipes and fittings, including trimmings from the production of pipes and fittings, that will be reprocessed in a manufacturer’s plant after having been previously processed by the same manufacturer by a process such as moulding or extrusion and for which the complete formulation or material specification is known

3.1.4 pipes with barrier layer
plastics pipes provided with a thin barrier layer (e.g. to prevent or greatly diminish the diffusion of gases and the transmission of light through the pipe wall) and where the design stress requirements are totally met by the base polymer

NOTE Such pipes typically have an outside (barrier) layer of maximum 0.4 mm thickness, including any adhesive. Pipes with an outside layer greater than 0.4 mm are considered as multilayer pipes (see Bibliographic references [5] to [8]), with the outside layer then being the first of multiple layers rather than having only a barrier function.

3.2 Symbols

\[\begin{align*}
C & \quad \text{overall service (design) coefficient} \\
 d_e & \quad \text{outside diameter (at any point)} \\
 d_{em} & \quad \text{mean outside diameter} \\
 d_{em,\text{min}} & \quad \text{minimum mean outside diameter} \\
 d_{em,\text{max}} & \quad \text{maximum mean outside diameter} \\
 d_n & \quad \text{nominal outside diameter} \\
 d_{sm} & \quad \text{mean inside diameter of socket} \\
 e & \quad \text{wall thickness at any point} \\
 e_{\text{max}} & \quad \text{maximum wall thickness at any point} \\
 e_{\text{min}} & \quad \text{minimum wall thickness at any point} \\
 e_n & \quad \text{nominal wall thickness} \\
 p & \quad \text{internal hydrostatic pressure} \\
 \rho_D & \quad \text{design pressure}
\end{align*} \]
3.3 Abbreviated terms

- **DN**: nominal size
- **DN/OD**: nominal size, outside diameter related
- **LCL**: lower confidence limit
- **MDP**: maximum design pressure
- **PB**: polybutylene
- **S**: pipe series

4 Classification of service conditions

The performance requirements for piping systems conforming to EN ISO 15876 are specified for four different application classes and shown in Table 1.

NOTE 1: Each class is related to a typical field of application and for a design period of 50 years. The classification is taken from ISO 10508 [4]. The fields of application are given as a guideline and are not obligatory. Class 3 (low temperature underfloor heating) given in ISO 10508 [4] does not apply to EN ISO 15876.

For any application the selection of the applicable class conforming to Table 1 shall be agreed by the parties concerned. Each application class shall be combined with a design pressure, \(p_D \), of 4 bar \(^2\), 6 bar, 8 bar or 10 bar, as applicable.

\(^2\) 1 bar = \(10^5\) N/m\(^2\) = 0.1 MPa
Table 1 — Classification of service conditions

<table>
<thead>
<tr>
<th>Application class</th>
<th>Design temperature, (T_D) °C</th>
<th>Time (a) at (T_D) years</th>
<th>(T_{\text{max}}) °C</th>
<th>Time (a) at (T_{\text{max}}) years</th>
<th>(T_{\text{mal}}) °C</th>
<th>Time (a) at (T_{\text{mal}}) h</th>
<th>Typical field of application</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (a)</td>
<td>60</td>
<td>49</td>
<td>80</td>
<td>1</td>
<td>95</td>
<td>100</td>
<td>Hot water supply (60 °C)</td>
</tr>
<tr>
<td>2 (a)</td>
<td>70</td>
<td>49</td>
<td>80</td>
<td>1</td>
<td>95</td>
<td>100</td>
<td>Hot water supply (70 °C)</td>
</tr>
<tr>
<td>4 (b)</td>
<td>20</td>
<td>2,5</td>
<td>70</td>
<td>2,5</td>
<td>100</td>
<td>100</td>
<td>Underfloor heating and low temperature radiators</td>
</tr>
<tr>
<td></td>
<td>Followed by 40</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Followed by (see next column)</td>
</tr>
<tr>
<td></td>
<td>Followed by 60</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Followed by (see next column)</td>
</tr>
<tr>
<td>5 (b)</td>
<td>20</td>
<td>14</td>
<td>90</td>
<td>1</td>
<td>100</td>
<td>100</td>
<td>High temperature radiators</td>
</tr>
<tr>
<td></td>
<td>Followed by 60</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Followed by (see next column)</td>
</tr>
<tr>
<td></td>
<td>Followed by 80</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Followed by (see next column)</td>
</tr>
</tbody>
</table>

\(a \) A country may select either class 1 or class 2 to conform to its national regulations.

\(b \) Where more than one design temperature appears for any class, the times should be aggregated (e.g. the design temperature profile for 50 years for class 5 is: 20 °C for 14 years followed by 60 °C for 25 years, 80 °C for 10 years, 90 °C for 1 year and 100 °C for 100 h).

NOTE For values of \(T_D \), \(T_{\text{max}} \) and \(T_{\text{mal}} \) in excess of those in this table, this standard does not apply.

All systems which satisfy the conditions specified in Table 1 shall also be suitable for the conveyance of cold water for a period of 50 years at a temperature of 20 °C and a design pressure of 10 bar.

All heating installations shall only use water or treated water as the transfer fluid.

NOTE 2 The manufacturer of plastics pipes and fittings should give guidance on the type of treatment required and on aspects of application such as oxygen permeation.

5 Material

5.1 General

The material from which the pipes and fittings are made shall be polybutylene which shall conform to EN ISO 15876-2:2003 and EN ISO 15876-3:2003, as applicable.

5.2 Influence on water intended for human consumption

All plastics and non-plastics materials for components of the piping system, when in permanent or temporary contact with water which is intended for human consumption, shall not adversely affect the quality of the drinking water.

NOTE European standards on test methods for the assessment of migration, odour and flavour and for microbiological assessment are under preparation.
5.3 Crystallisation

After extrusion or moulding, PB undergoes a crystalline phase transition before it develops its optimum properties. For quality control purposes, therefore, samples should be taken immediately after extrusion or moulding and be stored for 10 days in a conditioning room at (20 ± 5) °C prior to testing.

5.4 Reprocessable material

The use of the manufacturer's own reprocessable material obtained during the product and works testing of products conforming to this standard is permitted in addition to the use of virgin material. Reprocessable material obtained from external sources and recyclable material shall not be used.
Bibliography

[4] ISO 10508, *Thermoplastics pipes and fittings for hot and cold water systems*

[5] ISO 21003-1\(^1\), *Multilayer piping systems for hot and cold water installations inside buildings — Part 1: General*

[6] ISO 21003-2\(^1\), *Multilayer piping systems for hot and cold water installations inside buildings — Part 2: Pipes*

[7] ISO 21003-3\(^1\), *Multilayer piping systems for hot and cold water installations inside buildings — Part 3: Fittings*

[8] ISO 21003-5\(^1\), *Multilayer piping systems for hot and cold water installations inside buildings — Part 5: Fitness for purpose of the system*

\(^1\) To be published.